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ABSTRACT

The design of filters and amplifiers with minimum element distribu-

tion, minimum number of elements, minimum sensitivity to parameter change,

etc. is important today. Since the synthesis problem usually has an

infinite number of solutions, it is desirable to be able to transform a

given design into a network with the same transfer function but having

fewer elements or better element distribution, etc. The techniques of

equivalent network theory which apply a congruence transformation to a

network matrix in order to generate equivalent networks are used to do

this. An extension of the Cauer formulation is discussed which applies

the transformation directly to the element parameter matrices, thereby

placing the elements of the transformed network directly in evidence.

The transformation is then used to transform to an equivalent network

whose elements differ from those in the original network by only an in-

cremental amount. In the limiting case, a set of differential equations

for the elements of the equivalent network result with arbitrary inputs.

The method of steepest descent is applied to choose these inputs in order

to force the network to converge on the optimal design.



CONTINUOUSLY EQUIVALENT NETWORKS AND THEIR APPLICATION

By

J.D. Schoeffler

I. Introduction

Among the major goals of network theory are the elimination of

transformers from networks and the control of element-value distribution,

topology, and sensitivity of the network to changes in element values.
1

Usually these goals are approached by demanding that a synthesis technique

be found which yields a network with the desirable qualities listed above.

Hence a great number of different synthesis techniques have been found, no

one of which is general enough to attain all of the listed goals. For

example, the Brune and Darlington synthesis methods yield networks with a

minimum number of elements but have mutual coupling among the elements.

The Bott-Duffin method requires no transformers but uses an extremely large

number of elements.

A different design philosophy was propounded by Cauer in 19292 and

Howitt3 in 1931. They found that a whole family of networks could be

generated from a given network by means of matrix transformations. If

these transformations were properly selected, all of the networks so found

were equivalent, that is, had the same driving point and/or transfer

impedance as the original network. This result implies that the great

burden of achieving all of the listed desirable goals can be removed from

the synthesis technique. The synthesis method need merely find a single

suitable network. Then, from the group of equivalent networks found by

matrix transformation, a network is selected which has no mutual coupling,

and does have good element distribution, topology, etc.

-1-
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Unfortunately, the matrix transformation method never realized its

potentiality despite much effort.4'5'6 The problem is that there is no

unique relation between network topology, elements, and parameter matrices.

Hence, as soon as the original parameter matrix is transformed, it becomes

very difficult to recognize the new network. In particular, it is diffi-

cult to see in advance how to choose the transformation matrix so that

desirable elements result. Only the simplest applications of this method

have thus far been found.

In this paper, an extension of the Cauer formulation of the equivalent

network problem is discussed which applies the transformations directly to

the element parameter matrices, thereby placing the element of the trans-

formed network directly in evidence. The transformation is then used to

transform to an equivalent network whose elements differ from those in the

original network by only an incremental amount. In the limit as this

incremental amount approaches zero, a set of first order linear differential

equations for the elements of the equivalent network result. The elements

of the original network then serve as the initial conditions for these

equations. The differential equations have some arbitrary input functions

such that for any choice of these inputs, the solutions to the equations

yield elements which are functions of the independent variable and which

for any value of the independent variable constitute an equivalent network.

Thus it is possible to transform from a given network to an equivalent

network by varying the elements of the original network in a continuous

manner. The advantage of this approach is that the elements of the trans-

formation matrices become very easy to choose in contrast to the situation

where the transformation is not continuous.
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The problem of selecting these arbitrary inputs so that optimal

networks result is considered. In particular, the method of steepest

descent is applied to design networks with minimum element distribution

and/or minimum number of elements.

II. Equivalent Network Theory

Recently it has been shown 7,8,9,10 that the Cauer formulation of

the equivalent theory problem could be extended in such a way that direct

control of the elements of the equivalent network resulted. To be more

explicit, the usual Cauer formulation generates equivalent networks by

applying congruence transformations to the terminal admittance matrix of a

network. This technique was extended so that transformations can be

applied directly to the branch admittance matrix while at the same time

preserving a driving point or transfer ratio or some combination of driving

point and transfer ratios. These results are used in this paper and are

summarized here.

Let the equilibrium equations of a network with n independent mode pairs

on the admittance basis be given by

I Y4 E 2.1

where I is the nxl column matrix of current variables and E is the nxl column

matrix of voltage variables and Y4 is the nxn terminal admittance matrix.

To transform to an equivalent network, Cauer applies the transformation:

E A 4 E'

2.2

I' t I
4
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j where A4 is nonsingular and superscript t means transpose. This results

in the new set of equilibrium equations

I' = Yf E' 2.3

where the new terminal admittance matrix is related to the given matrix

by a congruence transformation:

At Y4 A 2.4Y14 = A4 44

Equivalence is assured if A4 is nonsingular and certain elements of A4 are

properly chosen. That is, the new and old networks are assured of being

realizable and of having any combination of driving point and/or transfer

impedances the same.

By using the generalized equilibrium equations of Guillemin, it was

shown that a related transformation could be applied directly to the bxb

branch admittance matrix Yb where Yb is defined by

J-Yb V 2.5

and J and V are the (bxl) column matrices of branch voltages and currents.

Making the transformations

V TV'

2.6

j Tt j

yields a new branch admittance matrix Y' given by

Yb =Tt Yb T 2.7
b b



Since the elements of Yb and Y are the elements of the original and

transformed networks, it is clear that this approach to equivalence gives

the elements of the new network explicitly, thereby allowing control over

them. Note also that if the original network is passive, the branch

admittance matrix is positive definite or semi-definite and that the con-

gruence transformation preserves this characteristic, If the original net-

work has no mutual coupling, Yb is a diagonal matrix with all positive

bentries. If T is chosen so that Y is also diagonal, the congruence trans-

formation insures that all of the elements of Y' are also positive. Thus
b

no negative elements can appear due to the application of the transformation.

This is the problem in the usual Cauer formulation as discussed by Howitt.
3

The most general branch is a parallel connection of R, L, and C and

hence the branch admittance matrix of the network may be written as

Y =G +s + -L - 1 2.8

where G is the branch conductance matrix, C is the branch capacitance matrix,

and L-1 is the branch inverse inductance matrix. It has been shown that

equivalent networks result if congruence transformations are applied to each

of the element matrices as follows:

G' TtG T
1 1

'C' TtCTt T2

(L =Tt (L-l) T3  2.9

and if each of the transformations satisfies the following constraint

equation
Ti at tTia A4 2.10
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where a is the usual nxb cut set matrix of the network and A4 is a non-

singular nxn matrix with certain rows properly chosen to keep desired

transfer ratios invariant. Notice that different transformations may be

applied to each of the element matrices but all must satisfy Eq. 2.10

with the same nonsingular A4 .

If the original network was realizable, the transformed network is

also realizable since the congruence transformation leaves positive

definite and semidefinite matrices at least positive semidefinite. In-

spection of Eq. 2.7 shows that the new network defined by Y1 has no

mutual coupling provided that TtYbT is diagonal or that, in other words,

each of the Ti is orthogonal with respect to the corresponding parameter

matrix. The placing in evidence of the elements of the new and old net-

works in this approach to equivalence is very advantageous. The problem

of choosing the arbitrary elements of the transformation in order to

arrive at optimal networks is the subject of this paper.

III. Continuously Equivalent Networks

The transformation from one network to another equivalent network

can be visualized by considering the vector space interpretation of a

network. let a network have b elements. Then the branch admittance

matrix Yb is square with b2 entries. For a reciprocal network, Yb is

symmetrical and hence there are only (b 2 + b)/2 independent quantities in

the matrix. Call this number Q. In a Q-dimensional vector space, each

coordinate of which is the value of one entry of Yb' each point represeats

a network. The set of all networks equivalent to a given network corres-

onds to a set of points on a surface in this Q-dimensional snace. If an

equivalent network has no mutual coupling, only b of the Q entries are

nonzero and the set of all equivalent networks without mutual coupling
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corresponds to a set of points on a subsurface of the surface of equiva-

lent networks. We are interested in transforming from the original

network (a point in Q-space) to a more desirable network, that is, to

some other point in Q-space which lies on the surface of equivalent net-

works.

For simple networks, it is possible to choose transformation matrices

which satisfy the equivalence restrictions and which result in networks

which are more desirable in some sense. But for a network of even moderate

complexity, it is not easy to choose the free parameter of T. With the

vector soace interoretation in mind, we can imagine the transformation not

as a single "jump" from one point on the surface to another, but rather

as a succession of transformations T1, T .... each of which transforms

the original point to another point on the surface a differential distance

away. In the limit, the transformation T becomes continuously varying and

the point on the surface of equivalent networks moves, following a contin-

uous line from the original network to the final network.

To make this approach more concrete, consider an independent variable

x. Then if the transformation T is considered as a function of x, T(x)

the kth element of the equivalent network e k is also p function of

x, ek(x). That is, for any value of x, the set e1 (x), e2 (x), .... ,eb(x)

is equivalent to the original network. Using this approach, the selection

of the transformation matrix T is greatly facilitated.

To formulate the problem on a continuous basis, consider the trans-

formation matrix T which transforms Yb into Yb + AYb whez AYb is incre-

mental in size:

T = U + AT 3.1
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where U is the bxb unit matrix. The application of T to Yb results in

Yb given by

YI - TtYbT

- Yb + YbAT + AT t Yb + AT t T 3.2

Define

T - TIAx 3.3

where Ax is a scalar. Then T and Y become

T = U + AT - U + TIAx

Yb = Yb + (YbTI + TtYb)AX + O(Ax 2) 3.4

Writing T -T(x), Yb - Yb(x), and Y = Yb(x + Ax), Eq. 3.4 becomes

Yb(x + Ax) - Yb(x) +t Y +  3.5
Ax b lb Ax

Passing to the limit yields the matrix differential equation

dYb t
YbT Ti b 3.6

Let Yb = Feij]'

Since Yb is symmetrical Eq. 3.6 is symmetrical and hence correspond to

only (b2 + b)/2 equations each of which is of the form

deij ut + t 1 1, 2,  ... 3.7
dx b j j i, il, b
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where uk is the kt h unit vector in b space.

The matrix T1 is a function of x, T1(x), and must be selected so

that equivalent networks result. To derive the equivalence restrictions

on TI , start with the general restriction

Tat at A4  3.8

Writing

T U + T1AX 3.9

and

A4  U + BAx 3.10

we have

t TlatAx t +tBAxa +T = x +aBx .11

or

T1 at - atB .12

Thus the restrictions on T1 are very similar to those on T except that

B is of the form (considering the preservation of the driving point and

transfer impedances at terminal pairs 1 and 2):

0 0 0 0

0 0 0 0
B- 5.13

X x x x

x x x x

where the x's indicate arbitrary numbers. That is, B has rows of zeros

corresponding to the terminal pairs in question. Writing out Eq. 3.12

yields nb linear equations relating the b2 entries of T and the b2 - kb

entries of B (k is the number of terminal pairs at which equivalence is

retained). Thus fewer than b 2 of the elements of T are independent.
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The technique is best illustrated by an example.

Consider the network shown in Fig. 1. We can transform this network

by considering it to be two parallel networks each with the graph and

tree shomi in Fig. 2. For this graph, tree, and branch numbering, the

standard cut set matrix is

L1 1 
3.14

If the branch admittance matrices are

G 92 i 3.15

and

hi1 h12 h13

L -I "hl2 h22 h23 3.16

h1 h 23 h 33J

then

Yb - G + 1 L-1  3.17s

According to Section 2, these may be transformed to find equivalent

networks by congruence transformations TG and TL

G' Tt GT= G g

3.18

(Li)1 - TtL L-'T:

provided that
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TGt . tA 4

3.19
TLt tT = - A4

where A4 is an nxn nonsingular matrix. Assuming only the input impedance

is to be preserved, A4 must have the form
47

A4  1  a0A14 3 . 2D

with a2 nonzero,

In the continuous case we have

dG OT +TtG

and

dl - 1  -1 t -1L T2  T2 L.21

whe re
T1 a t a tB

T 2at a tB

and

B - A 4 - U ] 5.22

In order for A4 to be nonsingular, b 2 must not equal -1.

Let

TI = t 4  t 5  t 6  3.25

7 t8 t9
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anid

T2 - tI t t1 3.24

tt tA tt
y 8 9

Then Eq. 3.22 give constraint relations among the tij and among the t'j.

Specifically, each matrix equation yields 6 homogeneous equations in 11

parameters. Hence only five of each set are independent. Solving for

the remaining six in terms of these five yields the constraints:

t = t -b t - - b

3 1 21 1 2t5 4 t b2  t5 = t 4 b 2t5 = - t4  tt . t

6 4 6 4

t8 =-t 7 + b I  t -t7 + bI

t t 7 + b2  t W t' + 3.25

The differential equations for the G matrix are subject to a further

constraint. That is, all of diagonal elements of G must be zero since

it corresponds to a resistor network. The same need not be true for the

inductance matrix because mutual coupling is allowed in this case. Hence

Eqs. 3.21 beomes 1  0

d 0j G + t G3.26ewg 2
g2 "~GTI +T1 tG '

or

dg1

dx . 291 t 1

dg2
m-- 2g 2t 5
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dg3
- 3 t 9

and

0 a gltl + g2 t 9

0 glt 3 + gt 7

0 g2 t 6 + g3t8  3.27

Cobining Eq. 3.27 with Eq. 3.25 yields

dg, .
d- - 2gitl

dg2

dg 3-- 2g 3 (t 7 4 b2 )

o a - gl(t 1 + b1 ) + g2 t 4

0 - gl(tl - b2) + g 3t7

0 - g2t4 + g3(bl - t 7 ) 3.28

The parameters t, t 4 , and t 7 may be eliminated from the differential

equations using the last three algebraic equations. Solving yields

2glt I - gl(b 2 - bI) - g3bl

2g2 t 4 = gl(b 2 + b1 ) - g3 bl

2g3 t 7 - gl(b 2 + bl) + g3b, 3.29
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Hence the differential equations for the resistors become

dg- g1(b2 -b 1 ) -g 3 b

dg 2
g- -gl(b2 +b.) * g 3 bl

dg3- gl(b 2 + bI) + g3 (bl + 2b2 ) 3.30

Notice that the algebraic equations in Eqs. 3.28 may not be solvable

for b and b2 in case any element is zero. For example, if g- M 0 for

any value of x, we find

0 = g2t4
0 = g3 t 7

0- g2t4 + g3(bl - t3) 3.31

or

t4 a tl b I  0

Hence in this case, b1 is no longer independent. Several degenerate

cases of interest arise. These cases and the additional constraints

they imply are summarized in Table 1. Inspection of Table 1 shows that

as an element becomes zero, it must stay zero and the additional con-

straints can be derived by setting that element equal to zero in Eqs.

3.30. This follows because the equivalent networks are derived from

congruence transformations and an element becoming zero causes a decrease

in rank of Yb which cannot then be increased by a congruence transformation.

The differential equations for the elements of the inductance matrix

are not so restricted since off-diagonal elements need not be zero. Hence

there are 6 differential equations. For the purposes of illustration,

suppose that no mutual coupling is allowed. Then only three differential
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equations result and they are identical in form to those for the resistors.

The resulting set of six differential equations for the network is:

gl W gl(b 2- bl) - g 3 bl

- - g1 (b 2 + b1 ) + g3b1
g W gl(b2 + bI ) + g (2b + bI )
g3 g1 (b2 b 1  3 2 1

h'l= h1(b2 - b ) - h35b l

11 h 21 ( 2  1

h2 - h1l(b2 + b I ) h b,

h13  h2 1 (b 2  b I ) + h33 (2b2 + bI ) 5.32

This set is valid only as long as no element is zero. As an element

passes through zero, additional constraints as in Table 1 must be applied.

The inputs bl(x) and b2 (x) are arbitrary functions except that b2 must

never equal - 1 so that A4 remains nonsingular. Continuing the example,

suppose the elements of the given network are those in Fig. 3 and suppose

we arbitrarily select

b,(x) 1

b2(x) - 0 3.33

Solution of Eqs. 3.32 with inputs defined by Eqs. 3.33 is easily accom-

plished by hand. The resulting elements as functions of x are shown in

Fig. 4a. The element values are also plotted in Fig. 5 for x between 0

and 1/3. It is easily verified that for any x, the original and trans-

formed networks have the same driving point impedance. At x - 1/3, h1 1

becomes zero. Thus inductance number 1 becomes infinite and the con-

straint bI - 0 must now be applied. To continue transforming the network,

suppose we now choose
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b1 (x) 0

b2(x) 1 3.34

The resulting elements for x > 1/3 are shown in Fig. 4b, and are also

plotted in Fig. 5. The inputs selected here were completely arbitrary

and merely included for illustrative purposes. The selection of the

arbitrary inputs in order to arrive at optimal networks is discussed in

the next section.

IV. Optimal Network Design

As mnetioned in the introduction, optimal network design - that is,

the design of networks with prescribed driving point and/or transfer

ratios plus minimum element distribution and minimum number of elements

etc. - is difficult using present synthesis techniques. The following

approach is proposed. After a network with a desired transfer function

has been designed by network synthesis techniques, the network is trans-

formed continuously to a more optimal network by proper choice of the

arbitrary inputs. For example, if the element distribution is to be

minimized, the inputs can be selected so that as x increases, the element

distribution decreases. Such a procedure requires an explicit error

criterion, that is, an explicit measure of the deviation of the given

network from the desired optimum. Since solution of the differential

equations for the elements is most efficiently handled on a digital com-

ruter, there is in general no particular advantage to choosing very simple

linear criteria. Two examples of error criteria are the following. If

element distribution is to be minimized a convenient measure of the

deviation from the optimum is a quadratic forma

bk(gk "2 4.1

0'"n u k-ml n u I n -
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where g is the average of the elements:

Ib

ZI g 4.2
bk-i

Thus 9 is a mean square measure of the deviation of the elements from

their mean and if 9 is minimized, so is the element distribution. Since

the gk are functions of x, V is also and hence if we calculate dV/dx, it

is a function of the elements and their derivatives and consequently a

function of the arbitrary inputs. These inputs can then be selected to

reduce q(x) as quickly as possible. This is called the '"ethod of steepest

descent" and is an example of a minimization technique that can easily be

applied." The similarity to the optimization problems encountered in

the field of automatic control should be noted."

Another criterion of interest is the number of elements. For example,

in an RL network as in the example, it may be desirable to minimize the

number of coupled inductors, etc. A possible measure of the deviation

from the optimum for the former case is a weighted sum of the inductance

values. Since all the inductances are positive, the weightings can be

chosen to emphasize any particular element or group of elements. For the

example problem we choose

3
V(x) - Z akhkk 4.3

k-i

where ak are arbitrary weighting factors. The derivative of V(x) with

respect to x becomes after substituting the expressions for the derivatives

of the elements:

-xblh l(a 3 - a1 -a 2) + h3 3 (a 3 - a1 + a2 + b2 Elh(a,+al-a 2 )+h33 (2a 3f

4.4
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Clearly to minimize dq/dx (to maximize rate of descent) choose

bl1 hll(a3 - a I - a2 ) + h35(a. - a, + a2D< 0

and

b2Fhll(a3 + a, - a 2 ) + h35(2aj< 0 4.5

Choosing the inputs according to Eq. 4.5 and solving the differential

equations is best handled on a machine. In this case, the differential

equations are replaced by finite difference approximations, requiring

that the inputs be limited in magnitude. According to Eq. 4.4, the arbi-

trary inputs should always be at their limits with their signs determined

from Eq. 4.5. The solution of the set of equations with these inputs

is straightforward and rapid on a computer and poses no problems. Notice

that the weighting factors are arbitrary and free to be changed during

the course of a solution in order to weight certain elements more heavily

at the discretion of the designer or to facilitate rapid convergence to

the optimal network. In general, any error criterion may be used that

can be formulated quantitatively and the arbitrary inputs then chosen to

transform the given network into a more desirable one. The advantage of

the continuous transformation over the discrete approach is that the

choice of the arbitrary parameters becomes very simple. These techniques

have also been applied to active circuits but will be discussed elsewhere.
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V. Summary

An extension of the Cauer formulation of the equivalent network

theory problem is discussed which applies the transformations directly

to the element parameter matrices, thereby placing the elements of the

transformed network directly in evidence. The method of steepest

descent is applied to choose the arbitrary parameters of the transforma-

tion in order to derive optimal networks, that is, networks with minimum

number of elements and/or minimum element distribution.
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Table I

Summary of Differential Equations for the Resistors

Case Additional Constraints Differential Equations

No Element None dg I
Zero dx- gl(b 2  b) g93bl

dg2- -= gl(b 2 + bI) + g3bl

dg2

= + b1 ) + g3 (2b2+bl)

gl 0 b I =0 dg I

dx

dg2-- "0
dx

dg5

dx 2g3b2

g2  0 bl(g3 - gl) glb2  dg, 2gbl

dg2
-x- =  0

dg3  2
S2blg3/g1

g 0 b2  -b I  dg,
"_ 2glbI

dg2

dx

dg3  0

dx
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1

23LI

Fig. 1 Example Network Fig. 2 Graph and Tree

2 2-4x

Z()>1 1 2 2 Z(s)-> +4x 2 1+x+3x2+4

1
Fig. 3 Numerical Example O - (a)

6.-

4.- 91

3 -
'Il Z(s)- g2  L22 L3 g3

0 I V -

1 2 g=e ~ 1L 1 =1 1.538 9, 3 1 = 0

19 2 x L 5
F Equivalent Element Versus X g 2 = 9 Le 22 =3

3= 4 x  )-3eX3 L33 m 3e

(b)

Fig. Continuous Equivalent Networks
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